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Abstract

Several approaches to the problem of expert finding have emerged in computer science
research. In this work, three of these approaches - content analysis, social graph analysis and
the use of Semantic Web technologies are examined. An integrated set of system requirements
is then developed that uses all three approaches in one hybrid approach.

To show the practicality of this hybrid approach, a usable prototype expert finding system
called ExpertQuest is developed using a modern functional programming language (Clojure)
to query social media data and Linked Data. This system is evaluated and discussed. Finally,
a discussion and conclusions are presented which describe the benefits and shortcomings of
the hybrid approach and the technologies used in this work.
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1 INTRODUCTION

1 Introduction

The original idea for this report arose from my frustration at endeavouring to find particular
expertise in search engines and a growing realisation that expert finding was actually a much
discussed and researched computer science topic. After some research, the initial aim was to
build an expert finding system using Semantic Web technologies but the research suggested
that this topic had already been covered in some depth. What was missing from the research
was a practical examination of what sort of expert finding system could be developed with
the data and tools as existing on the Internet today.

This report is an attempt to build this system, a practical, usable prototype expert finding
system called ExpertQuest. This system will collect data from Twitter, GitHub and DBPedia
to help users find computer programming experts.

1.1 Objective

The objective of this report is to see if it is possible to build and test a usable prototype
expert finding system within the following constraints:

• Using a modern programming language.

• Using only data that is available on the Internet via social network APIs and Linked
Data.

• Uses a mixed or hybrid approach to expert finding.

• Fulfil the requirements as outlined in Chapter 3.

1.2 Structure of the Document

• Chapter 2 discusses the need and value of expertise, as well as how expertise is defined
and how expertise can be managed via technology.

• Chapter 3 outlines the particular strategy and requirements used in the system implemented
for this report.

• Chapter 4 discusses various technology and design choices for implementing the expert
finding system.

• Chapter 5 contains a detailed description of the actual design and implementation of
the expert finding system.

• Chapter 6 outlines the testing and validation carried out on the results of the expert
finding system.

• Chapter 7 outlines conclusions and some ideas for future work.

7



2 BACKGROUND

2 Background

This chapter will discuss the need for and value of expertise, as well as how expertise is defined
and how expertise can be managed via technology.

2.1 The Need for Experts

2.1.1 Experts in the Wild

In 1960 the famous primatologist Dr. Jane Goodall observed that chimpanzees used specially
chosen twigs to fish for termites [1]. This was the first time a scientist had observed this
behaviour and it helped open new avenues of research into animal tool use.

Since then, tool use has been observed in seven classes of the animal kingdom, including
primates and crows [2]. One of the most interesting things about the research into chimpanzee
tool use is that some of the tools that chimps use are “culture-bound”. Only certain tools are
known to a particular populations of chimps:

“Many differences can be found in tool behaviour for which neither genetic nor
ecological explanations are suitable.” [3]

The use of tools is quite often taught by one generation to the next generation, so that in
a sense these chimps have a local tool culture [4]. This also implies that certain individual
chimps in a troop have more knowledge about certain tools than some other chimps. The
use of tools allows these chimps to broaden their ability to adapt and thrive by opening up
new sources of nutrition. These local chimp “experts” are helping to keep the troop alive.

This is much the same as our species case - human beings are also reliant on the skills and
knowledge of multiple individuals for our survival.

2.1.2 The Expert Finding Problem

In a large organisation, perhaps even global, finding someone who is an expert may be a
challenge - especially when compared to finding the local expert in a small neolithic community.

The problem can be called the expert finding problem or expertise location problem. We
shall stick with the term expert finding.

As may be expected, there is a large body of software and research available on the expert
finding problem and even the researchers do not agree on an exact definition.

This problem is defined by Lappas (2011) quite simply:

“... given a task at hand and a set of candidates, one wishes to to efficiently
identify the right expert (or set of experts) that can perform the given task.” [5]

In their research, Yimam-Seid and Kobsa (2003), also found that expertise is sought out for
two different reasons. They identified:

“... two main motives for seeking an expert, namely as a source of information
and as someone who can perform a given organizational or social function.” [6]

8



2.1 The Need for Experts 2 BACKGROUND

These two definitions can be combined into the following single definition of the expert finding
problem which will be used in this report: Efficiently identify the right individual (or group)
from a field of candidates that has the expertise to provide desired information or complete
a desired task.

This definition gives a viewpoint from which to survey the various strategies that have been
used to solve the expert finding problem using software. For the sake of this report, it will be
assumed that returning an individual (rather than a group) is sufficient.

2.1.3 The Evolution of Human Expertise

The story of human evolution is also wrapped up in the evolution of human expertise. Indeed,
there is some evidence to suggest that our ability to think and communicate socially as human
beings is intimately wrapped up in the evolution and increasing complexity of our tool use:

“Lower Palaeolithic technologies clearly do increase in hierarchical complexity
through time, raising the possibility of important interactions with the evolution
of human cognitive control and socially supported skill acquisition.” [7]

Human expertise has had a profound impact on our own species, even to the point that
increasing human expertise in tooling has improved our cognitive and social abilities.

2.1.4 Expertise and the Global Corporation

As the global economy has become more complicated, expertise has become more and more
valuable in the modern corporation. The tangible results of having experts working within
your company include patents, copyrighted works, trade marks and other forms of what are
known as intellectual property. In fact, the true value of intellectual property within a business
may be worth more than all of the physical assets combined:

“During 2000, the market-to-book ratios of Fortune 500 companies increased to
6.3:1, suggesting that for every dollar of physical assets on the balance sheet, the
market recognized $6.30 worth of other intangible assets.

On average, in successful organizations, brands, intellectual property and the like
are two to three times the value of physical assets. Intellectual property holdings
are valuable corporate assets, and may make up a great portion of the total worth
of an organization.” [8]

With this new level of value attached to expertise, and the importance of experts to business
continuity (such as after a major disaster), there now exists an even greater desire to identify,
manage and co-ordinate the expertise within an organisation.

2.1.5 What is Expertise?

So experts and expertise have had a profound impact on human beings and their closest
primate relatives and experts are also important in the economy. But what exactly does the
word “expert” mean?
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The word “expert” generally means someone who knows much about a specific subject
matter or discipline. Expertise is the noun describing this quality. However, the concept is
more subtle than that.

The online Business Dictionary defines “expertise” in the following way:

“Basis of credibility of a person who is perceived to be knowledgeable in an area
or topic due to his or her study, training, or experience in the subject matter.”
[9]

This definition offers a slightly more nuanced view of expertise:

• Expertise is a quality of an expert, a person that has studied, trained and gained
experience in a particular subject matter. This person has more skills and knowledge
than most others in a specific area.

• This person is perceived to have this quality by other people - expertise has a social
dimension. A hermit can know everything about growing orchids, but without a society
to communicate with, nobody will be able to consider the hermit as an expert (apart
from the hermit of course, but this is perhaps tautological).

• It is also implied that this person has credibility or is trusted by others who perceive
this expertise. Again, if our hermit suddenly appears in the village square claiming to
be an expert orchid grower but refuses to supply any kind of bona fides, the villagers
would probably be correct to assume that he or she is a crank.

So we can say that expertise has a knowledge dimension, a social dimension and a trust
dimension. To be fully considered an expert, a candidate must have the necessary knowledge,
have a group of peers aware of this knowledge and have a level of credibility amongst these
peers that this knowledge is valid. These properties are summarised in Table 1.

These properties will provide a useful framework for the discussion of expert finding. We
shall use these three properties to judge several approaches to expert finding in the following
sections. Each of the expert finding approaches we are using can be compared using the
following questions:

• (1) How does this approach measure ensure that the expert has adequate knowledge?

• (2) Does this approach measure the social profile of the expert in a meaningful way to
show that the expert is regarded as an expert by his/her peers?

• (3) Does this approach validate the credibility expertise of the expert in any way?

There is some crossover between question 2 and 3 (as large groups of peers who regard
a candidate as an expert does strengthen the candidate’s credibility). However they will
be treated separately as there is enough divergence in other forms of expertise validation
(education or research for instance) for the distinction to be useful.

To these three questions we can also add a fourth:

• (4) Does this approach efficiently identify the right individual from a field of candidates
that has the expertise to provide desired information or complete a desired task?
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2.2 Expert Finding Using Content Analysis 2 BACKGROUND

Adequate Knowledge A candidate must have the necessary knowledge
Peer Awareness / Social Profile A candidate has a group of peers aware of their knowledge
Peer Credibility A candidate is trusted by their peers

Table 1: The Three Properties of Expertise

The word “efficiently” does have some importance here, as speed and ease of use should be
considered when comparing approaches.

2.2 Expert Finding Using Content Analysis

2.2.1 Introduction

Content analysis is the approach used by much of the expert finding academic work found in
the Text REtrieval Conferences (TREC)[10]. In this work, content analysis is taken to be a
synonym of textual analysis, and the phrases are used interchangeably.

This work was the mainstay of expert finding research until the rise of the social Web
(which will be examined in the next section). In his survey of expert finding techniques,
Lappas et al (2011) call this approach “Expert Location Without Graph Constraints”.

The content analysis usually amounted to using textual analysis techniques on large data
corpora, for instance the email archives of any large organisation. In fact, the email list
archives of the World Wide Web Consortium was often used as a basis for academic research
as they were publicly available.

This approach concentrates on estimating

“the probability that a candidate... could be an expert with respect to a given
topic query”[11]

In order for a data corpus to be analysed, it would need to be put through standard text
preprocessing:

• Sanitising the data.

• Tokenising the remaining data.

• Stop word removal and stemming the words in the corpus.

After this, there are two possible models that can be pursued (Balog et al, 2006 [12]):

• A candidate-centric model where the various documents associated with a candidate are
grouped and then a vocabulary of terms is extracted from the documents to represent
the candidate’s expertise. The probability of the set of terms in the query being
represented in each candidate’s model can be then generated using Bayesian analysis.

• A document-centric model is where the set of terms for each document are extracted
and ranked based on the terms in the query. The candidates associated with each
returned document are then found and an aggregated set of terms for all documents
belonging to this candidate are generated. This set of terms is then analysed against
the query to return the top candidate using Bayesian analysis.
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2.2 Expert Finding Using Content Analysis 2 BACKGROUND

Balog found that the document-centric model outperformed the candidate-centric model.
One of the main reasons is that an index of candidates did not need to be kept up to date
as the list of possible candidates could be generated dynamically from the list of documents
returned from the initial query.

There are other variations on this approach but they mainly retain the same emphasis on
modelling expertise based solely on the set of terms available in the text of the data corpus.
One such variation was produced by Serdyukov and Hiemstra (2008) where terms associated
with a candidate were augmented with sets of terms found in various online searches:

“We used various kinds of GlobalWeb search services to acquire a proof of expertness
for each person which was initially pre-selected by an expert finding algorithm
using only organizational data.” [13]

While this is an interesting avenue of research, it has the same emphasis on text based
analysis.

2.2.2 Content Analysis and Adequate Knowledge

Content analysis measures the expertise of each candidate by modelling the expertise of
candidates using standard, well understood information retrieval techniques. Various different
types of content for example, emails, academic papers, business documents, can be combined
into one system for analysis. Other types of text-based information such as Web based
searches can be used to augment the system.

2.2.3 Content Analysis and Social Profile

The main disadvantage of content based expert finding is that it only addresses the first of the
three properties of expertise as outlined in Table 1, Adequate Knowledge. This knowledge is
captured in the set of terms associated with each candidate. As noted earlier, Lappas (2011)
called this approach “Expert Location Without Graph Constraints” and for a good reason.
There is very little analysis of the social profile of the expert. There is not much knowledge
of where the expert appears in the social graph of his or her peers.

It can be difficult or impossible to gain this type of knowledge based solely on textual
analysis of terms. Of course, this knowledge may not be sought (as when a user searches
in a search engine, the popularity of an expert is secondary to the expertise being provided).
However there are situations where the social profile of an expert may be useful, for instance,
language or other cultural factors, when all other criteria are equal.

2.2.4 Content Analysis and Expertise Credibility

For much the same reasons as above, the actual credibility of the expertise of the candidate
amongst his or her peers is difficult to assess also, based solely on textual analysis. What if
the documents supplied have been falsified, for instance?
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2.2.5 Content Analysis and Effective Identification of Experts

This approach can identify an expert from a field of candidates, once the caveats above
are considered. However one disadvantage is that the data corpus may have to go through
extensive extraction and transformation before it can be used, for example as in Balog et al,
2006 [14]. Once this ETL (Extract, Transform, Load) process is automated, the system may
be efficient but there is an upfront development cost for this data munging.

2.2.6 Commercial Expert Finding Software Using Content Analysis

There have been many commercial expert finding systems available for purchase, normally
by large corporations with extensive email and document corpora that could be mined for
information. Some of these systems were reviewed by Maybury et al (2002) [15]. At the time
of writing of Maybury et al’s research (2002), most of these systems would have fitted into
the content analysis grouping.

2.3 Expert Finding Using Social Graph Analysis

2.3.1 Introduction

Since the rise of social media, much of the academic research on expert finding has been
concentrated on augmenting the results of textual analysis with an analysis of the social graph
to discover if information about expertise can be gleaned from the links between people.
Lappas et al (2011) call this approach “Expert Location with Score Propagation”. They
describe it as a two stage process:

“1) using language model or heuristic rules [to] compute an initial expertise score
for each candidate... and 2) using graph-based ranking algorithms to propagate
scores computed in the first step and rerank experts...” [16]

This research improves on the results of textual analysis - as Bozzon et al (2013) observed
about their own research, it showed:

“the empirical demonstration of the greater contribution of activities of social
network members with respect to their profiles for assessing the user expertise. We
also found that certain profiles and activities of closest social contacts may provide
useful information, thus giving a positive contribution to the expert ranking.” [17]

There are several approaches that can be used to do this scoring and each normally revolves
around describing the algorithm that is used.

A variation of the PageRank algorithm was proposed by Kardan et al (2011) [18]. They
called their variation the SNPageRank Algorithm. The PageRank algorithm is famously used
by Google and can be simply described as a link counting algorithm. The more links a
website has, the greater the importance of the website. Kardan et al extended this idea
to social networks, so rather than counting links, their algorithm counted posts, likes and
connections between people in a social network (Friendfeed). The more messages a person
had, the more important they were in the network. They extracted data from social networks
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and analysed it using their modified algorithm. They found that they could achieve positive
results by using this approach.

The Hyperlink-Induced Topic Search (HITS) Algorithm was developed by Jon Kleinberg
for ask.com [19]. This was examined by Dom et al (2003) [20] as a possible expert finding
algorithm. This algorithm is normally used to measure Web page “authority”. A Web page
becomes an authority if it has many links from what are called “hubs”, or Web pages that
links to a lot of other authority Web pages. They used the HITS algorithm on an email
corpus. They considered those who received lots of email enquiries to be “authorities” and
those who forwarded on queries to be “hubs”. In this particular instance, the algorithm was
not as successful as others, possibly because email communication is not naturally structured
in a strong hub versus authority way.

2.3.2 Social Graph Analysis and Adequate Knowledge

An initial phase of textual analysis generally provides a measure of the expertise of the
candidate. This is used to generate profiles for each candidate based on the results of the
textual analysis.

2.3.3 Social Graph Analysis and Social Profile

Social graph analysis can provide insight into the social profile of the expert, which may lead
to further insights into their expertise (for instance, a particular age profile or profession may
be associated with one expert and not another). The main impact of social graph analysis is
that, depending on the algorithm, one can measure the number and strength of links to the
expert, allowing comparison of link scores.

2.3.4 Social Graph Analysis and Expertise Credibility

The main advantage of using social graph analysis is that two of the main properties of
expertise can be analysed. An extensive social profile can be a good indicator of expertise.
However, an extensive social profile does not guarantee expertise per se. For instance, a
mediocre expert may gain followers on social media due to good public relation skills, rather
than actual expertise. Other factors may also need to be assessed for ensuring expertise
credibility, for example peer reviewed science papers.

2.3.5 Social Graph Analysis and Effective Identification of Experts

The social graph can indeed provide information about experts. The ironic thing about link
analysis and expert finding is that outside the world of computer science research, social
media is already used to find expertise everyday:

“Social networking plays a significant role in expert finding. Often we require
a more general expert to suggest the specialised expert we need by referring to
colleagues in his or her social network. Social networking also helps to find an
expert by providing a group of people within a community and perhaps links of
people outside of the community as well.” [21]
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As with the textual analysis approach, there may be an upfront cost in terms of data extraction
and transformation e.g. Kardan et al (2011) [22]. Also, when compared to the textual analysis
approach where a data corpus may be available on a local network, the distributed nature of
the social graph may introduce its own complications in terms of network latency.

The success of link or social graph analysis may also depend on the choice of algorithm. As
Dom et al (2003) found, certain algorithms may not fit the “shape” of certain data corpora
and may not produce conclusive results. Also, privacy may become a major issue when using
a social network data to find expertise.

2.4 Expert Finding Using Semantic Web Technology

2.4.1 Introduction

There is also a subset of expert finding research that uses Semantic Web technology. This
approach overlaps with the content analysis and social graph analysis approaches but it is
worthy of examination in its own right. Notably Lappas et al (2011) [23] do not mention any
of this research in their excellent survey.

In the literature there are very few outlines of expert finding systems that actually use
Semantic Web technology. One of the few is Li at al (2006) in which they describe a system
called FindXpRT. This system was developed to use the FOAF ontology (Friend of a Friend )
[24] with an extra series of rules implemented in RuleML [25], an XML based rule deduction
markup language. The experts’ profiles in the system were implemented in FOAF as FOAF
facts. Various rules in RuleML were then used to augment these facts - rules to allow clients
to find an expert to collaborate with or rules that will allow an expert to pick another expert
to collaborate with.

In their survey paper, Titus Schleyer et al (2008), mention a couple of challenges of using
Semantic Web technology in an expert finding system, specifically for finding biomedical
experts. Among these problems were the fact that Semantic Web technology does not meet
all the requirements of building an expert finding system and it would likely be:

“a useful technological infrastructure for implementing expertise location systems,
not as an end-to-end architecture” [26].

However Schleyer et al do recommend Semantic Web technology for keeping an expert’s
profile up to date by linking it to their activities across the Web. They also suggest connecting
disparate users and expertise domains in useful ways using specially adapted ontologies and
using data aggregated by other Semantic Web technologies to augment existing data stores.

This use of Semantic Web as an augment to other approaches to expert finding is also
echoed in Stankovic et al (2010). They specifically discuss Linked Data (LOD is defined as
Linking Open Data):

“Traditional approaches tend to retrieve their data from closed or limited data
corpuses. LOD on the other hand allows querying the whole Web like a huge
database, thus surpassing the limits of closed data sets, and closed online communities.
We believe that this opens new possibilities for traditional expert search and
profiling systems which usually only rely on data from their local and limited
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databases or on unstructured data gathered from the Web. LOD also stands up
for a great promise to deliver multipurpose data that can be used to find experts
in many domains and with many different expertise hypotheses.” [27]

However, Stankovic et al also mention that there are challenges with merging duplicate data
sets, verifying the authenticity of expertise and standardising how expertise data, for example
science papers, are captured. All of these challenges arise out of the distributed nature of
Linked Data.

2.4.2 Semantic Web and Adequate Knowledge

One of the main advantages that Semantic Web technologies offer is a way out of the
information silos that expertise data tends to end up in. With the correct use of common
ontologies and Linked Data, expertise from multiple disciplines could be merged and queried.
Semantic Web technologies offer the possibility of using richer data sources to generate
candidate profiles.

2.4.3 Semantic Web and Social Profile

Several Semantic Web technologies can be used to measure the social profile of a candidate,
for example the FOAF protocol.

2.4.4 Semantic Web and Expertise Credibility

As was pointed out above, the possibility of rich connected data sources to generate candidate
profiles could allow several different checks to be made against a candidate’s bona fides,
thereby increasing the credibility of each candidate profile.

2.4.5 Semantic Web and Effective Identification of Experts

Semantic Web technologies do not identify experts on their own. Semantic Web technologies
show major potential for linking disparate areas of expertise for analysis and searching.
However, as Titus Schleyer et al (2008) [28] point out, there needs to be a technological
infrastructure in place to take advantage of these technologies and as yet, these types of
developments are not common. So the potential of Semantic Web technologies in expert
finding remains in the area of academic study, unlike for instance content analysis, where
several commercial systems exist using the content analysis approach.

2.5 Summary

• Experts are a vital part of both human culture and the modern corporation.

• Expert finding can be defined as the problem of identifying the right individual from a
field of candidates that have the expertise to provide desired information or complete
a desired task.

• Expert finding is a challenging but necessary problem in managing intellectual property.
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• Expertise can be said to have a knowledge dimension, a social dimension and a credibility
dimension.

• The content analysis approach offers great strengths in providing the knowledge dimension
of a candidate.

• The social analysis approach can be used to measure the social profile of a candidate.

• Semantic Web technologies can be used to augment the other two approaches, including
increasing the credibility of a candidate by querying multiple, rich data sources.

• No single approach provides a complete solution to the expert finding problem.
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3 Strategy and Requirements

The rest of this document will outline the design, development and testing of a prototype
expert finding system that will be called ExpertQuest. This chapter outlines the particular
strategy and requirements used in the system implemented for this report.

3.1 Definition of the Hybrid Approach

ExpertQuest is inspired by, rather than based on, the approach by Metze et al (2007) when
they designed the Spree System. They describe the basic system as:

“a system to facilitate exchange of information by automatically finding experts...
[our] objective is to provide an online tool, which enables individuals within a
potentially large organization to search for experts in a certain area, which may
not be represented in company organization or reporting lines” [29]

The actual Spree system [30] consists of a Python Web application that uses ontological data
derived directly from the Web (Yahoo Search API) in conjunction with an algorithm that uses
this data to classify experts. The website then uses a community of users to further classify
expertise as they interact with each other. This is what is meant by the hybrid approach.
Spree uses all three of the approaches that were outlined in the previous chapter in one system
- content analysis, social graph analysis and Semantic Web technology. This gives us a design
approach that can be used for the ExpertQuest system. The system should be Web based
and use all three approaches to expert finding together, in order to fulfil the primary and
secondary requirements outlined below.

3.2 Primary Requirements

As part of this development, the ExpertQuest system will attempt to fulfil the key requirements
that Maybury et al [31] outline for an expert finding system:

1. The system should be able to identify experts from a field of candidates.

2. The system should be able to classify the level of expertise of each candidate.

3. The system should be able to validate the expertise of each candidate.

4. The system should be able to rank candidates on multiple dimensions.

These will be regarded as the primary requirements to evaluate the system.

3.3 Secondary Requirements

Alongside these core requirements, ExpertQuest should also meet the following secondary
requirements:

1. The system should use the hybrid approach as defined above and measure in some
meaningful way, all three dimensions of expertise as outlined in the last chapter - the
knowledge dimension, social dimension and credibility dimension.
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2. The system should be based on real-time data available on the Internet as much as
possible. This will help to avoid the problems associated with stale expert profiles. Any
information on an expert should be up to date. The system should also minimise any
need for expensive extraction and transformation of data such as outlined by Kardan
et al (2011). There will be no delays for batch processing data or anything similar, at
least in the prototype.

3. The system should also allow a way to contact the expert if possible.

4. The system should be as real-world as possible, not just a theoretical outline - basically
a usable prototype.

5. If possible, the system should be user friendly and reasonably fast and should have a
Web interface.

These secondary requirements will also be used to evaluate the system. The design choices
and constraints arising from these requirements will be discussed in the next chapter.
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4 Design Choices

This chapter discusses various technology and design choices for implementing ExpertQuest.

4.1 Computer Programming Expertise as Domain for Expert Finding

Many areas of expertise were considered as the domain for ExpertQuest and even making
ExpertQuest handle multiple domains. However, the multiple domain idea was quickly
dismissed as too complicated for this document. Moreover, several domains stood out in
terms of available data, and the following domains were isolated as possibilities:

• Biotechnology

• Medical and genetic research

• Computer Science

Each of these would be an excellent candidate as a topic, but in the end the the author’s
experience in computer programming made this the obvious choice as a domain of expertise.
A knowledge of the technical jargon in the field and a rich availability of data sources made
this an easy choice. It was also decided that confining the system to one subset of a domain
(computer programming versus all of computer science) would make the system easier to
build and evaluate in the time available.

However, there were other factors in making computer programming an obvious choice
when the data sources available online were reviewed.

4.2 Data Source Constraints

Because ExpertQuest is required to work with real-time data as much as possible and avoid
data extraction, this implies that the data that will be required for finding experts will most
likely be via one of two methods:

• Scraping data (text extraction) from websites.

• Application Programming Interfaces (API) that are exposed by various organisations on
the Internet.

There are others (purchasing formatted data for instance) but they remain outside the scope
of this document.

4.3 Web Scraping

This choice was considered as an excellent possibility for extracting data. For instance, Google
Scholar contains hundreds of academic papers and citations. It is an excellent resource for
finding experts in multiple fields, but particularly in the medical and biotechnology fields.
There even exists a Python library for extracting data via Web scraping from Google Scholar
[32].
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However, on further examination, this type of Web scraping breaks the terms of service
of Google Scholar (and multiple other websites of this type) and the legality of this activity,
even for research, became questionable. Therefore the idea was abandoned.

Unfortunately Google Scholar does not expose an API, so it was not an option as a form
of data for ExpertQuest. Alongside this decision, the domains available for ExpertQuest were
diminished as there are not many publicly accessible data sources for academic papers as
reliable as Google Scholar. Other vendors in this area were contacted, but all they provided
were multi-gigabyte data dumps of data that are several years old.

4.4 APIs

Full lists of what APIs are available on websites like the Programmable Web [33]. On this
website alone there are 13,000+ APIs listed for everything from 3D to zip codes. However,
these APIs break down into several main categories:

• APIs provided by commercial companies at a cost.

• APIs provided by commercial companies available for free but with limits on usage.

– A subset of this category are social media APIs.

• APIs provided by non-commercial or academic organisations available for free.

– A subset of this category includes most of the Linked Data APIs.

Unfortunately, the availability of API access is also quite constrained as many of the commercial
organisations who were offering free API access have removed this access as part of the drive
to control their data as “big data” whch is now commercially valuable. LinkedIn is one such
business. This service is a professional social network ("Facebook for work") and would be an
excellent source of expertise data. Many professionals effectively use it as an online curriculum
vitae. However, LinkedIn have closed their API access to all but a couple of partner businesses
[34].

After reviewing available API data sources and deciding on computer programming as a
good choice for the domain of ExpertQuest, there were three APIs available that seemed to
be useful:

• Twitter API

• GitHub API

• DBPedia Linked Data Interface

4.4.1 Twitter API

Twitter has an extensive API [35] and as Bozzon et al note, it is an excellent choice for
searching for experts:
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“Twitter appears [to be] the most effective social network for expertise matching,
as it very frequently outperforms all other social networks (either combined or
alone)... Twitter appears as well very effective for matching expertise in domains
such as computer engineering, science, sport, and technology & games.”[36]

Twitter offers easy access to data that can be mined for experts and the API is free, so it is
ideal as one of the central data sources for ExpertQuest.

4.4.2 GitHub API

GitHub is the most popular open source code sharing website on the Internet today and also
offers an extensive free API to interact with the site [37]. As was outlined above, computer
programming is the domain of expertise that ExpertQuest will cover. GitHub makes an obvious
choice as a data source - the site operates almost as a social media site for developers in
many different languages, so the data stream available in the API is rich and extensive.

4.4.3 DBPedia Linked Data Interface

Linked Data is a Semantic Web technology and is an important part of the hybrid approach
as was defined earlier. Linked Data is defined as a way to use the Web:

“to create typed links between data from different sources... ...Linked Data refers
to data published on the Web in such a way that it is machine-readable, its
meaning is explicitly defined, it is linked to other external data sets, and can in
turn be linked to form external data sets.” [38]

Linked Data is important because it allows the meaning of the data to be explicitly defined so
it can be used as reference material by systems such as ExpertQuest. A system can extract
meaningful content quite easily from the machine readable Linked Data.

Unfortunately after much research, it appears that much of the Linked Data [39] is not
suitable for ExpertQuest as it falls under the following categories:

• Data is available on the Web but the server is not reliable enough to base a system on
(for instance, SPARQL end points can disappear and reappear).

• The data that is made available is in the format of large data dumps of RDF triples.
This is very useful for most research, but is explicitly disallowed for ExpertQuest as
there will be no complex extracting or processing of data in this prototype.

• Much of the data was not in the domain of computer science.

The best example of Linked Data available on the Web is also the most useful for ExpertQuest.
DBPedia provides a Linked Data interface to the data that is contained in Wikipedia.

DBPedia provide an API that can be queried in several ways and the JSON (JavaScript
Object Notation) enabled DBpedia Linked Data Interface [40] was chosen as the best way
to get interesting data into ExpertQuest via the web. The server connection to DBPedia is
relatively reliable and the interface is well documented.
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4.5 Using Functional Programming Language - Clojure

Several different programming languages were examined for implementing ExpertQuest, but
in the end the decision was made to use the Clojure programming language [41]. Clojure is
a modern functional programming implementation of Lisp that is written to run on the Java
Virtual Machine (JVM). Clojure offers the following advantages for writing an expert finding
system like ExpertQuest:

• As it runs on the JVM, it is stable and performs well on multiple operating systems.
All of the extensive Java libraries are also available to use in Clojure.

• As Clojure is a Lisp with the “data as code” philosophy that this entails, processing data
is extremely easy. Clojure comes with a rich standard library that makes programming
data analysis software very straightforward. It is also a small language and easy to learn
as a result.

• Clojure is a modern functional language with data structures that are immutable
by default. This allows the software developer to avoid many bugs associated with
managing state in applications. However, the language is designed for practical software
development and also comes with an assortment of mutable data types that can be used
as needed.

• The tooling around Clojure is excellent and it comes with support for several text editors,
integrated development environments (IDEs) and build/deployment tools.

The various Clojure libraries that were used will be discussed in the next chapter.

4.6 Twitter Bootstrap

It was originally envisaged that a complex JavaScript based user interface would have been
desirable for ExpertQuest. There are many programming languages that compile to JavaScript,
including an implementation of Clojure called ClojureScript, that were considered for this
purpose.

After some research it was concluded that this would complicate the project beyond the
needs of this document. For this prototype a simple clean and usable Web interface can be
produced using the excellent Twitter Bootstrap library [42]. This is a library of HTML and
Javascript components that can be used to build a Web interface quickly and easily without
the major time sink which would be involved in writing a user interface from scratch.

4.7 OpenNLP

For the text analysis portion of the ExpertQuest system, the choice of libraries was obvious.
The Apache OpenNLP [43] is the one of the best machine learning/natural language processing
toolkits available and it is available on the JVM. As Clojure is also hosted on the JVM,
OpenNLP is available to be used in ExpertQuest without any difficulty.
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4.8 General Design Approach

The general design approach for ExpertQuest will be the following:

• Initially identify candidates via Twitter.

• Use Linked Data and GitHub data to verify and rank the candidate experts.

4.9 Summary

• ExpertQuest will use social media data from the Twitter and GitHub API for finding
experts.

• ExpertQuest will also extract content from the Linked Data interface to DBPedia.

• ExpertQuest will be written in Clojure, with a Web based interface using the Twitter
Bootstrap library. The OpenNLP libraries will be used for text processing.

The next chapter will go into more detail as to how ExpertQuest is implemented.
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5 Detailed Design and Implementation

This chapter contains a detailed description of the design and implementation of ExpertQuest.

5.1 Overall System Workflow

Figure 1 exhibits a diagram for the overall system workflow for ExpertQuest. The system
goes through the following steps to find experts for a user:

1. The user chooses a search term in the Web interface. In the prototype, the user selects
a programming language from a drop down list in the Web interface. The languages
presented are the top 50+ languages from the Tiobe programming language popularity
index [44].

2. The search term is passed to the Twitter Search API.

3. The Twitter Search API returns a number of search results.

a) All Twitter usernames in the results are collated and are passed on to the GitHub
API to ascertain if there are matching usernames on GitHub.

b) All matching GitHub accounts are queried against the GitHub API.

4. All Twitter accounts with matching GitHub accounts are queried using the Twitter API
to obtain a number of most recent tweets.

5. The abstract for the programming language being queried is loaded from DBPedia via
the Linked Data API.

6. The Tweets for each Twitter account are concatenated into a string and analysed against
the DBPedia abstract using a feature hashing algorithm.

7. All of the results are collated and the expert candidates are ranked according to several
criteria as outlined below.

5.2 ExpertQuest Namespaces

Code is abstracted into namespaces in Clojure, which are generally confined to individual
files, similar to Java packaging, each containing a number of functions. The components
mentioned below are each implemented as individual namespaces in ExpertQuest.

5.2.1 Twitter Client

A simple client for Twitter was written using the recommended Clojure Twitter API library
[45]. There are multiple API calls exposed by the Twitter API. Only two of these APIs are
used in ExpertQuest:
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Figure 1: ExpertQuest Workflow

• The Twitter Search API which will return a number of search results for a specific
search term. This is used in step 2 above. The search term used is the programming
language plus the string “github”. This is used to disambiguate searches where the
programming language name has also an everyday meaning e.g. Python or Ruby.

• The Twitter User Timeline API which will return a specified number of most recent
tweets for a specified username. This is used in step 4 above.

The Twitter client component wraps all tweet data into a Clojure data structure and returns it
to the search component. The values returned by the component includes the Twitter user’s
name, their account name and the number of followers the user has on Twitter.

5.2.2 GitHub Client

A wrapper for the GitHub API was also created using the best available Clojure GitHub API
library [46]. There are again multiple individual APIs exposed by the GitHub API but there
are only two needed by ExpertQuest:

• A call to the GitHub User API to extract all information pertaining to one user account.
This is used in Step (3a) and (3b) above.

• A call to the GitHub User Repository API which returns all repositories belonged to the
user. This is used in Step (3b) above and is used to sum the total bytes of code that
are contained in a user’s repositories for a specific language.
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The GitHub client component wraps all returned GitHub data into a Clojure data structure
and returns it to the search component. The values returned by the component include the
number of followers the user has on GitHub, and the sum total number of bytes of code in a
specific language that the user has in their Git repositories.

5.2.3 DBPedia Client

The Linked Data API of DBPedia provides a REST (Representational State Transfer) interface
that will return JSON data based on a query to a specific URI. ExpertQuest uses the Clojure
HTTP client and JSON libraries to query this interface for a provided query. The resulting
data is automatically converted to a Clojure data structure and the abstract (text data)
pertaining to the search parameter is extracted.

A call to extract disambiguation data from DBPedia was also created, but in the end was
not necessary for the prototype.

This component is used in step 5.

5.2.4 Text Analysis Component

The text analysis component of ExpertQuest is used to measure how much the expert
candidate has been tweeting about the specific programming language. This component
uses the Clojure wrapper library for the OpenNLP library for this purpose [47]. In order to
get a measurement of how much an expert candidate has been tweeting about a specific
language, the following steps are taken:

1. The tweets for one specific user that were collected from the Twitter API in Step 4 are
concatenated into one long string and passed to the text analysis component.

2. The abstract text data from DBPedia (Step 5), about the specific programming language,
is passed to the text analysis component. This text is generally a few hundred words long
and is loaded with descriptive phrases and terminology pertaining to the programming
language. For instance, here is the Clojure entry:

“Clojure (pronounced like "closure") is a dialect of the Lisp programming
language created by Rich Hickey. Clojure is a functional general-purpose
language, and runs on the Java Virtual Machine, Common Language Runtime,
and JavaScript engines. Like other Lisps, Clojure treats code as data and
has a sophisticated macro system. Clojure’s focus on programming with
immutable values and explicit progression-of-time constructs are intended to
facilitate the development of more robust programs, particularly multithreaded
ones.”

3. Both pieces of string data are transformed into vectors using the feature hashing
algorithm described below and are compared using cosine similarity to give a value
between 0 and 1, where 1 is more similar. This value is passed back to be used as part
of the expert ranking.
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Feature Hashing Algorithm: It was originally envisaged that a simple comparison such as
the Sorensen / Dice coefficient or the Jaro-Winkler distance would have been sufficient for
the text comparison task in ExpertQuest. However these algorithms are generally used on
much shorter strings than those ExpertQuest is comparing. Further research was carried out
to determine a fast way to compare text documents.

In the field of machine learning and natural language processing, input data is normally
transformed into a feature vector which is an array of integer values where each value
represents an item of a specific type or a measurement of a specific property (a “feature”).
A standard procedure to vectorise a document is to extract and count the occurrence of
each word. This vector is generally mapped to a document dictionary which is represented
as an associative array where the actual word can be looked up. ExpertQuest needs to be
reasonably fast, and converting text documents into a vector form for comparison can be slow
and use a large amount of RAM [48].

Fortunately there is a technique called feature hashing available that will work perfectly
for ExpertQuest. Feature hashing is a machine learning technique (also known as the “hash
trick”) that bypasses the associative array element of the feature vector. The Wikipedia article
on feature hashing explains this quite succinctly:

“[feature hashing] is a fast and space-efficient way of vectorizing features, i.e.
turning arbitrary features into indices in a vector or matrix. It works by applying
a hash function to the features and using their hash values as indices directly,
rather than looking the indices up in an associative array.” [49]

So rather than store the word in an associative array, we hash the word and use that resulting
value as the index for the word in the feature vector. This is updated in the vector as
appropriate. As Foreman and Kirshenbaum observed of their implementation of this technique
“SpeedyFX”, the results are compelling and accurate when compared to the standard method:

“We have shown that using SpeedyFx integer hashes in place of actual words is
faster, requires less memory for transmission and use of multiple classifiers, and
has an effect on classification performance that is practically noise compared to
the effect of other common parameters in model selection.” [50]

And again in Weinberger et al, feature hashing is praised for its benefits:

“The benefits of the hashing-trick leads to applications in almost all areas of
machine learning and beyond.” [51]

There is no native implementation of the feature hashing technique in Clojure, so an implementation
was written. This implementation works as follows:

1. The incoming string parameter is passed to a function which removes punctuation,
filters out everything but nouns and verbs and stems the remaining words (using the
Clojure OpenNLP library).

2. Creates a vector of the remaining words and hashes each one using a Clojure hashing
function.
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1 (defn conj -stemmed -nouns -verbs
2 "Conj sentences by nouns and verbs , stemming them at the same time"
3 [input -text]
4 (->> input -text
5 (clean -string)
6 (nouns -verbs -filter)
7 (map #(porter -stem -text (first %1)))
8 (string/join " ")))
9

10
11 (defn get -fvec -for -text
12 "Transforms a string into a feature hash vector"
13 [input -text]
14 (clear -fvec -atom)
15 (let [stemmed -text (conj -stemmed -nouns -verbs input -text)]
16 (let [word -vec (string/split stemmed -text #" ")]
17 (doseq [x (range 0 (count word -vec)) :let [word (get word -vec x)]]
18 (let [index (mod (digest/crc32 word) fvec -size)]
19 (let [old -value (get @fvec -atom index )]
20 (swap! fvec -atom assoc index (inc old -value )))))
21 (identity @fvec -atom ))))

Figure 2: Stemming and Feature Hashing Algorithms

3. These hash values are stored in an atom (a mutable Clojure data type) that is updated
with each word in turn.

4. The finished vector is passed back as a return.

The actual implementation is displayed in Figure 2 above.
The algorithm performs well enough to be usable within a Web interface. For instance,

the text of the novel Anne of Green Gables by Lucy Maud Montgomery, downloaded from
Project Gutenburg, contains about 105,000 words. This was vectorised by the algorithm on
a MacBook Pro with 8gb of RAM in under two minutes. The resulting vector looks like this:

1442 367 386 50 157 546 193 76 81 379 68 178 103 211 324 153 210 243 38
99 109 66 197 41 130 148 131 262 89 214 54 89 165 210 226 30 153 93 72 51
26 127 123 95 82 949 331 93 109 142 55 41 107 106 37 195 106 72 57 73 59
44 210 95 656 280 46 92 128 425 132 156 53 153 35 67 55 68 141 132 93 519
72 49 62 111 278 49 101 74 103 74 121 124 17 124 95 102 105 113 83 95 116
245 104 165 54 21 224 37 216 122 357 103 297 1336 68 71 215 83 91 34 100
292 42 82 55 86 112 50 118 345 116 589 264 222 23 76 27 58 24 155 89 263
38 114 172 57 139 179 181 311 67 218 60 181 287 33 154 103 71 218 221 900
195 87 117 62 468 149 109 96 116 20 147 244 133 177 88 158 60 47 83 62 95
32 146 329 22 30 60 239 127 31 101 320 193 50 85 67 164 99 170 126 173 215
57 135 353 277 103 131 202 70 680 114 237 526 163 216 168 304 234 104 298
125 298 121 64 82 156 144 59 457 115 89 37 43 54 118 142 75 27 126 329 72
74 97 129 63 149 128 78 99 366 207

As most of the text documents will be much smaller than this within ExpertQuest, this level
of performance was deemed sufficient for the prototype.
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Cosine Similarity The resulting vector for each text document (either a DBPedia abstract
or a string of concatenated tweets) need to be compared for similarity. The cosine similarity
was chosen as it is generally quite fast over sparse vectors. The actual implementation of
the cosine similarity algorithm was taken from the Clojure Incanter statistical package. The
cosine similarity value is returned back to be used in the ranking of the expert candidates.

5.2.5 Search Component

The search component contains the main search function that is called when the user submits
the form in the Web interface as described below. This function calls the various components
in order as described in the workflow as set out in Figure 1.

Search Algorithm Constants Two constants are defined in the ExpertQuest search component.
These values behave how the search algorithm behaves:

• Twitter Search Count: This is the amount of search items to load from Twitter. This
defaults to 50.

• User Timeline Count: This is the amount of tweets to load from a user’s Twitter
timeline for text comparison. This defaults to 25.

This means that for each of the 50 search results that returns a Twitter account that has a
matching GitHub account, 25 tweets will be loaded from this account for the text analysis.
This means that the search algorithm in ExpertQuest performs at O(n^2).
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Figure 3: Search Page

5.2.6 Web Interface

The ExpertQuest Web interface is developed using the following Clojure libraries:

• The Ring library which provides clean abstracted access to a Web server from within
the application [52].

• The Compojure library which is used to route URLs internally in the application [53].

• The Hiccup library which is used to output HTML to the client [54].

Twitter Bootstrap is used to provide clean cross-browser typography and layout (albeit a
simple one).

The Web interface is illustrated in the following figures:

• Figure 3, above, exhibits the search drop down that presents a list of programming
languages. The user can search for programming experts by selecting a language
and clicking the search button. The data for this drop down list is loaded from a
configuration file as described later in this chapter.

• Figure 4, overleaf, shows the Twitter Bootstrap modal popup that the users see
when the system is searching. It was decided that rather than using a more complex
asynchronous callback based system, this user interface was sufficient for the prototype
despite its inelegance.

• Figure 5, overleaf, illustrates the search results as displayed once the search has
returned with results. The results are ranked according to the criteria described later in
this chapter. One thing to note is that the cosine similarity value is listed as the Twitter
Mentions column to give the user some indication of how much this expert candidate
has been tweeting about the specific programming language. This value is displayed as
a progress bar, rather than as a number, for increased visual feedback.
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Figure 4: Searching Modal Popup

Figure 5: Search Results
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1 (sort -by
2 (juxt :boc :github -followers :cosim :twitter -followers ))

Figure 6: Expert Ranking Code Extract

5.3 Mutable Elements

As Clojure is a functional programming language, the emphasis is on minimising mutable state
within an application. It is interesting to note that all the areas where state can be mutated
can be listed quite simply for ExpertQuest as a result (compared to say, an application written
in typical Java, which would have mutable state spread right through each class).

The mutable state in ExpertQuest consists of the following

• A Clojure atom that is used when processing the data within the feature hashing
algorithm.

• Various Twitter and GitHub security configuration files in the Clojure EDN format
(Extensible Data Notation, basically Clojure data structures stored as strings in files).

• An EDN file containing the list of the Tiobe Top 50+ programming languages [55] with
the corresponding correct search string for DBPedia. This was necessary as carrying out
a search for “Java” in DBPedia returns the island nation rather than the programming
language. The programming language is listed as “Java (programming language)”. The
author developed code to return disambiguation pages from DBPedia, but this made
the Web interface very slow and the idea was left to one side for the prototype.

5.4 Expert Ranking

The expert ranking within ExpertQuest is achieved quite simply thanks to the rich data
handling ability of Clojure. A vector of maps is passed back to the Web view from the search
function and before it is displayed it is sorted by the following criteria:

• Number of Bytes - The number of bytes of code that the expert candidate has in their
GitHub repositories in the specific programming language being searched for.

• GitHub Followers - The number of GitHub followers they have watching their GitHub
repositories.

• Twitter Mentions - The cosine similarity of their most recent tweets when compared
with the DBPedia abstract on the specific programming language being searched for.

• Twitter Followers - The number of Twitter followers they have in their Twitter account.

This code is extracted and displayed in Figure 6 above.

5.5 Challenges and Compromises

This section is a discussion of some the challenges that were encountered during developing
ExpertQuest.
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5.5.1 Matching Twitter Accounts with GitHub Accounts

The system only presents results to the user where the Twitter and the GitHub name are
exactly the same. This is a compromise for the prototype as it obviously ignores results where
the same person has two different account names on each service.

An early attempt was made to cross reference Twitter and GitHub accounts using the
Yahoo Search API. However, there was no easy way to verify that any results returned were
about the same person - this would be a project in itself.

The compromise within ExpertQuest is a reasonable one as each expert candidate is checked
to make sure they were tweeting about a specific programming language and also that they
have code in repositories in this language.

5.5.2 Avoiding Non Programming Homonyms in the Search Results

Ruby, Python, Java and several other languages are all homonyms. Avoiding these non
programming homonyms in the Twitter Search is a real issue, so a simple compromise was to
also use the word “github” in the search query which helped narrow the results. This is not
very elegant, but it works reasonably well to avoid the homonyms.

In the next chapter, the ExpertQuest system is evaluated against the primary and secondary
requirements.
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6 Testing and Evaluation

This chapter outlines the testing and validation carried out on the results of ExpertQuest.

6.1 Text Comparison Testing

The feature hashing / cosine similarity algorithm was tested for accuracy using some basic
tests on the Clojure REPL as illustrated in Table 2 overleaf. In each case, string A and
B were passed through the feature hashing algorithm and the resulting vectors were passed
through the cosine similarity algorithm. The higher the score, the more alike the strings, with
the highest possible value being 1.

The scores were predictable and accurate as each test is described below:

1. This test shows that the algorithm only compares on nouns and verbs as designed.
These strings are equal as the noun “dog” is all that is being measured.

2. There are three out of four verbs that match in this test with an expected value of 0.75.

3. The only difference in these strings is the extra verb “barking”, so the score is less than
one.

4. String A has two nouns and string B has one noun and one verb, hence the 0.50 score.

5. The difference here is one word out of three (“mouse ran clock” versus “elephant ran
clock”) so the score is close to two thirds similar.

6. String A and B are here seen as the same, as word order is irrelevant.

These simple tests show that the text comparison is reasonably accurate. ExpertQuest only
requires reasonable accuracy as the cosine similarity score is only one factor amongst others
for expert ranking (as the “Twitter Mentions” measure in the Web interface).

6.2 Testing and API Limits

6.2.1 Test Runs

Three different tests were run to measure the performance of ExpertQuest. The tests took
the following format:

• A data dumper was written that rotated through all 53 programming languages in the
system (see Appendix 1 on page 45) and ran a search against Twitter and GitHub. The
data from these sessions was recorded and analysed.

• Each test only differed from the other in the values of the search component constants
as mentioned earlier. Column A in Table 3 overleaf is the amount of search items to
load from Twitter. Column B in Table 3 overleaf is the amount of tweets to load from
a user’s Twitter timeline for text comparison.
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Test No. String A String B Cosine Similarity
1 "white dog" "black dog" 1.00
2 "run jump play hide" "run jump play seek" 0.75
3 "running dog" "running and barking dog" 0.82
4 "runner jump" "running jump" 0.50
5 "the mouse ran up the clock" "the elephant ran over the clock" 0.67
6 "the mouse ran up the clock" "the clock ran over the mouse" 1.00

Table 2: Cosine Similarity Results for Example Strings

Test Run No. A - Twitter Search Count B - User Timeline Count
Test Run 1 10 5
Test Run 2 30 15
Test Run 3 50 25

Table 3: Test Runs

• The upper and lower values for these tests were discovered by trial and error. The lower
value represents the approximate threshold where some useful values are returned. The
upper value represents the approximate point at which the Twitter and GitHub API
limits get hit by the system. Beyond this point search queries may start failing.

• The values used in each test run are displayed in Table 3 above.

6.2.2 Defining an Expert for the Test Runs

ExpertQuest will display all of the data that it returns but will rank all candidates according to
the criteria outlined in section 5.4. Some candidates will have Twitter and GitHub accounts
and have been actively tweeting about the specific programming language in question. These
candidates may be of interest to the user. However, for the sake of the test runs, only
candidates who also have GitHub repositories containing code in the programming language
in question are considered “full” experts. These candidates are counted as correct returns in
the tests as they would be of the most interest to the user.

6.3 Test Results

Please note, more detailed test results are contained in the appendices on pages 45-49.

6.3.1 Precision

The precision of each test was calculated using the number of experts found divided by the
total number of candidates found. As each search for a programming language is independent,
the average precision for each programming language was worked out across all 53 searches.
As expected, when more data was pulled into the system using the larger search constants,
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Figure 7: Average Precision

the precision went up steadily. The average precision for each test run was as follows (also
see Figure 7 above):

1. 0.158265948

2. 0.171069182

3. 0.20215256

6.3.2 Recall

Each of the test runs passed in a search constant representing the number of Twitter search
results to return (10, 30 or 50). Under ideal conditions, each of these search results would
have contained the details of an expert. So the maximum number of experts that can ever
be returned is equal to the number of Twitter search results.

Using this information we can calculate the recall of each test by dividing the total number
of experts found by the Twitter search constant. As illustrated above, the results of each test
were calculated and then averaged across all 53 programming languages. The average recall
for each test run was as follows (also see Figure 8, overleaf):

1. 0.052830189

2. 0.020754717

3. 0.050943396

The recall dips in the second test run even though the search constants were increased, the
number of experts returned was not more much than in first test. The third test was much
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Figure 8: Average Recall

better, though surprisingly at a level similar to the first test. A lot more candidates were
returned in the third test, but the ratio of experts to non-experts does not increase. This
suggests that even with more data being added to the algorithm, the percentage of relevant
returns (experts in this case) does not increase significantly.

6.3.3 Cosine Similarity

ExpertQuest measures the cosine similarity of each candidates tweets and the DBPedia
abstract on the programming language, as laid out in section 5.2.4 on page 28. This is
used to represent how much each candidate was tweeting about the specific programming
language. As expected, the average cosine similarity goes up across each test run as the
amount of tweet data is increased. This can be seen in Figure 9, overleaf.

6.3.4 Comparison of Different Programming Languages

The results for Test Run 3 are displayed in Table 4. These results represent the ExpertQuest
at its most useful. Some results that are revealing:

• ExpertQuest was only able to find experts in 21 out of the 53 programming languages.

• ExpertQuest was most successful at finding experts in programming languages whose
development is actually hosted on GitHub. The precision here was much higher and
the results much more relevant. The top four languages where experts were found are
JVM (Jave Virtual Machine) languages.
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Figure 9: Average Cosine Similarity

Total Candidates Experts
Scala 18 14
Clojure 22 14
Groovy 24 14
Java 17 12
Erlang 18 11
Python 16 10
Ruby 15 9
Haskell 13 8
Perl 12 7
Dart 16 7
Lua 18 7
C 11 4
Go 28 4
R 9 3

C++ 11 3
C# 8 2
D 23 2

AWK 1 1
MATLAB 1 1
Prolog 2 1

Smalltalk 5 1

Table 4: Programming Language Results from Test Run 3
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6.4 Achievement of Requirements

ExpertQuest can now be evaluated as to whether it meets the primary and secondary requirements
as outlined in Chapter 3.

6.4.1 Primary Requirements

These requirements are the key requirements that Maybury [56] outlines for an expert finding
system.

• The system should be able to identify experts from a field of candidates:
ExpertQuest meets this requirement. For the test runs, experts were defined as candidates
with GitHub repositories in the desired programming language (see section 6.2.2 page
37) and ExpertQuest will rank these individuals higher than those without such repositories.

• The system should be able to classify the level of expertise of each candidate:
ExpertQuest meets this requirement. The display of candidates offers several measures
that can be used to classify the candidates - the number of Twitter and GitHub followers,
the amount of code in their repositories and the amount they have been tweeting about
the desired programming language.

• The system should be able to validate the expertise of each candidate: ExpertQuest
meets this requirement. GitHub followers are a sign that a candidate’s repositories are
useful and is a reasonable way of assessing the candidate’s credibility. A link to the
candidates GitHub account is also supplied in the interface, so the user can go and take
a look at the code for themselves.

• The system should be able to rank candidates on multiple dimensions: ExpertQuest
meets this requirement. Expert candidates are ranked simply in descending order
according to the criteria outlined in section 5.4 (on page 34).

6.4.2 Secondary Requirements

• The system should use the hybrid approach: As outlined in section 3.1 (on page
19), the hybrid approach uses all three approaches in one system - content analysis,
social graph analysis and Semantic Web technology.

– Content analysis is done on the Twitter stream and DBPedia abstracts via feature
hashing.

– Social graph analysis is provided via information on followers in the Twitter and
GitHub APIs, albeit in a very trivial form.

– Semantic Web technology is used in the form of the Linked Data interface with
DBPedia.

• The system should measure in some meaningful way all three properties of
expertise: ExpertQuest meets this requirement as follows:
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– A candidate can have tweets, repositories and GitHub followers, demonstrating
knowledge and credibility within the programming language in question.

– A candidate can have followers both on Twitter and GitHub, demonstrating that
their social peers are engaged with their expertise.

• The system should be based on real-time data available on the Internet and
should also minimise any need for expensive extraction and transformation of
data: ExpertQuest only uses live data from Web based APIs.

• The system should also allow a way to contact the expert if possible: ExpertQuest
provides links to the candidate’s Twitter and GitHub profiles.

• The system should be a usable prototype: The finished system returns experts in
approximately 40% of the languages used in the test runs. This is a weak but positive
result.

• If possible, the system should be user friendly and reasonably fast and should
have a Web interface: The system is not fast but it is Web based and easy to use.

6.5 Summary

• As more Twitter data was added to ExpertQuest the average precision and average
cosine similarity went up. Recall was not increased by adding more data.

• ExpertQuest returns useful and relevant results, but testing suggests that this happens
only in a specific subset of languages which are hosted on GitHub.

• ExpertQuest meets the requirements outlined in Chapter 3 with some caveats.
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7 Conclusions and Future Work

In Chapter 2, expert finding was defined as efficiently identifying the right individual (or
group) from a field of candidates that has the expertise to provide desired information or
complete a desired task. As we have seen, ExpertQuest did provide an efficient way to find
experts in specific programming languages across Twitter and GitHub. ExpertQuest will now
be analysed as the prototype for a possible commercial system.

7.1 SWOT Analysis

7.1.1 Strengths

• ExpertQuest met the requirements for an expert system as set out in Chapter 3.

• ExpertQuest demonstrates that one can build a reasonably useful system that returns
experts in a specific field using only data available via API. For programming languages
that have large communities on GitHub, the experts identified are often the programmers
who play major roles in their respective language ecosystems as library authors and the
like.

• The Clojure language and tooling infrastructure is an excellent choice for this kind of
Web enabled data extraction project. The Lisp based “data as code” philosophy and the
immutable data structures makes the code succinct and concise. Furthermore, the fact
that Clojure has built-in concurrency means that ExpertQuest could scale if needed.
The available of Java based libraries such as OpenNLP is also a major advantage.

7.1.2 Weaknesses

• ExpertQuest is pushing the limits for how slow a Web interface can be and still remain
useful. Queries may take several minutes. A different design may be warranted if
commercial development was taken further - batching and processing results in a
database perhaps. This would break one of the requirements for the prototype (no
data extraction).

• Over 60% of the programming languages returned no useful results (though this is a
factor of the data sources chosen, some programming languages are just not discussed
on Twitter). The precision and recall results are poor for many of the languages that
do return results also.

• The first large compromise in the design as outlined in section 5.5 (matching Twitter
and GitHub accounts, see pages 34-35) is a major weakness. In reality a commercial
software product with this flaw would not be useful as it would miss large chunks of
data. Even the solution used here has a small chance of associating two different people
in the same profile. This would need to be remedied before a commercial product could
be released.
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7.1.3 Opportunities

• The general design approach defined in section 4.8 (page 25) could be reused for other
areas of expertise i.e. Twitter can be used as a way of identifying expert candidates
that could then be filtered and ranked via information from other sources.

7.1.4 Threats

• ExpertQuest is built on the APIs of a company that is notorious for cutting off access
to developers. Twitter has killed multiple startup businesses in the last few years in this
way.

• API limits are also a factor and if the application became popular this could become a
real bottleneck.

• Privacy and data protection could also become major issues if a commercial version of
ExpertQuest was released.

7.2 Future Work

There are several areas of possible future work that arise out of this research:

• Researching how one authenticates the accounts of one individual across multiple social
networks. Perhaps a technology such as FOAF could be used to solve this problem.

• The general approach of augmenting Twitter and other social network data with other
sources of data could also be explored in other areas such as biotechnology. If a reliable
source of up-to-date scientific research was made available, the hybrid approach used
by ExpertQuest could then be used to create a system for expert finding using this data
source to rank expertise.

• ExpertQuest could be further developed as full application using a data store of some
kind. This would mean that the data would be slightly out of date but the queries would
run a lot faster. There would also be opportunities for doing further analysis across
various programming languages communities, for instance, seeing how experts and their
followers are related to one another across the social graph. There are multiple projects
of this type that could be carried out using a few weeks worth of ExpertQuest queries.
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Appendix 1: List of Tiobe Top 50+ Programming Languages

• ABAP

• ActionScript

• Ada

• Assembly language

• AWK

• Bash

• C

• C#

• C++

• Clojure

• COBOL

• CoffeeScript

• D

• Dart

• Eiffel

• Erlang

• F#

• Forth

• Fortran

• FoxPro

• Go

• Groovy

• Haskell

• Inform

• Java

• JavaScript
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• LabVIEW

• Lisp

• Logo

• Lua

• MATLAB

• Max

• ML

• Objective-C

• OpenEdge ABL

• Pascal

• Perl

• PHP

• PL/I

• PL/SQL

• PostScript

• Prolog

• Python

• R

• RPG

• Ruby

• Scala

• Scheme

• Scratch

• Smalltalk

• T-SQL

• VB

• VB .NET
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Appendix 2: Test Run 1 Results

Programming Language Total Candidates Found Total Experts* Found Precision Recall
AWK 1 1 1.000 0.100
Dart 2 2 1.000 0.200
Perl 2 2 1.000 0.200
Java 4 3 0.750 0.300

MATLAB 3 2 0.667 0.200
Python 3 2 0.667 0.200
Erlang 5 3 0.600 0.300
Scheme 5 3 0.600 0.300

Go 4 2 0.500 0.200
Prolog 2 1 0.500 0.100
Clojure 7 2 0.286 0.200
Haskell 7 2 0.286 0.200
C++ 5 1 0.200 0.100
Groovy 6 1 0.167 0.100
Scala 6 1 0.167 0.100

*See section 6.2.2 for expert definition
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Appendix 3: Test Run 2 Results

Programming Language Total Candidates Found Total Experts* Found Precision Recall
AWK 1 1 1.000 0.033
Dart 1 1 1.000 0.033
Perl 2 2 1.000 0.067
R 3 3 1.000 0.100

Ruby 5 4 0.800 0.133
Erlang 5 3 0.600 0.100
Java 5 3 0.600 0.100

Scheme 5 3 0.600 0.100
Groovy 6 3 0.500 0.100
Clojure 5 2 0.400 0.067

MATLAB 5 2 0.400 0.067
Go 6 2 0.333 0.067

Haskell 6 2 0.333 0.067
Python 3 1 0.333 0.033
Scala 6 1 0.167 0.033

*See section 6.2.2 for expert definition
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Appendix 4: Test Run 3 Results

Programming Language Total Candidates Found Total Experts* Found Precision Recall
AWK 1 1 1.000 0.020

MATLAB 1 1 1.000 0.020
Scala 18 14 0.778 0.280
Java 17 12 0.706 0.240

Clojure 22 14 0.636 0.280
Python 16 10 0.625 0.200
Haskell 13 8 0.615 0.160
Erlang 18 11 0.611 0.220
Ruby 15 9 0.600 0.180
Groovy 24 14 0.583 0.280
Perl 12 7 0.583 0.140

Prolog 2 1 0.500 0.020
Dart 16 7 0.438 0.140
Lua 18 7 0.389 0.140
C 11 4 0.364 0.080
R 9 3 0.333 0.060

C++ 11 3 0.273 0.060
C# 8 2 0.250 0.040

Smalltalk 5 1 0.200 0.020
Go 28 4 0.143 0.080
D 23 2 0.087 0.040

*See section 6.2.2 for expert definition
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